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We derive and discuss the finite-energy sum rules, which form consistency conditions imposed by analy-
ticity on the Regge analysis of a scattering amplitude. Their finite form makes them particularly useful
in practical applications. We discuss the various applications, emphasizing a new kind of bootstrap pre-
dicting the Regge parameters from low-energy data alone. We apply our methods to mS charge exchange
and are able to derive many interesting features of the high-energy amplitudes at various t. In particular,
we establish the existence of zeros of the amplitudes and of additional p poles. On the basis of the jnite-
energy sum rules and the analysis of the m.X amplitudes, we present theoretical and experimental evidence
that double counting is involved in the interference model, which adds direct-channel resonances to the
exchanged Regge terms.

I. INTRODUCTION

' "N this paper we derive and discuss the finite-energy
& ~ sum rules" (FESR), their implications, and their
application to 7' charge exchange (CEX). The main
results were reported elsewhere. ' Here we present a more
detailed account of the theory and its application.

In Sec. II we derive FESR for arbitrary scattering
amplitudes. They form consistency conditions that are
imposed by analyticity alone. For amplitudes that de-
crease fast enough, they tend in the limit of infinite
integration to the usual superconvergence relations. In
our formulation, all Regge poles appear in the same
form regardless of their n value. This helps in particular
to resolve difIiculties which appear in the superconver-
gence relations due to the uncertainty of the exact
location of the leading singularity. The finite form of
the sum rules makes them particularly useful in prac-
tical applications. They are a good tool for the deter-
mination of Regge parameters from low-energy data.
This section closely follows the unpublished Ref. 1.

In Sec. III we discuss the diRerent ways of using
FESR. They can be used either as a way of determining
low-energy parameters through high-energy data, or in
conjunction with the high-energy data for a better over-
all determination of the Regge 6t. A third way is to
predict the main parameters of the high-energy data
(the exchanged Regge poles) from the Iow-energy data
alone. This kind of bootstrap program is discussed in
detail.

*Work supported in part by the U. S. Atomic Energy Commis-
sion. Prepared under Contract No. AT(11-l)-68 for the San
Francisco Operations Ofhce, U. S. Atomic Energy Commission.

t Present address: Physics Department, University of Cali-
fornia, Los Angeles, Calif. 90024.

f Present address: Physics Department, Tel Aviv University,
Tel Aviv, Israel.

$ Present address: I.awrence Radiation Laboratory, University
of California, Berkeley, Calif.

' D. Horn and C. Schmid, California Institute of Technology
Report No. CALT-68-127, 1967 (unpublished).

'A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
Letters 248, 181 (1967); K. Igi and S. Matsuda, Phys. Rev.
Letters 18, 625 (1967).'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19,
402 (1967).

Sections IV and V give detailed accounts of the appli-
cation of our method to mS CEX, as reported in Ref. 3.
We use FESR to calculate the Regge parameters (as
functions of t) of the high-energy nlV charge exchange
(CEX) amplitudes from the low-energy sr% data (phase
shifts). Thus we carry out a new type of bootstrap:
Given the low-energy data of 7' (the E* states), we
calculate tl.e exchanged p trajectories (masses) and
coupling constants. We show how several interesting
features of the ill'* states "cause" (via FESR, i.e., via
analyticity) corresponding features of the exchanged
Regge poles.

Using the low-energy data and the FESR, we predict
the following high-energy features of the A'& & and 8( '

amplitudes of xE CEX':

(1) The spin-Qip amplitude vB& & is larger than the
non-Qip amplitude A'& ) by an order of magnitude at
t=0. This explains the near-forward peak in mS CEX.
(2) 8& & has a zero near t= —0.5 BeV'. This explains
the observed dip in ztV CEX. (3) A'& & has a zero near
t= —0.1 BeV'. (4) In an effective one-pole model, we

predict the p mass and a trajectory n,«which is 0.1 to
0.2 lower than the one measured at high energies. (5)
Using high-energy fits as an additional input, we find
some evidence for a second p trajectory, 0.4 lower than
the p. This may be the manifestation of a cut. (6) Using
the parameters of the additional p pole, we predict a
polarization of the right sign and order of magnitude.
(7) There is strong evidence for an (approximately)
Axed pole in 8&—) at j=0.

The results (1) to (3) are "caused" (via FESR) by
the following features (1') to (3') of the N* states:
(1') All prominent resonances enter with the same sign
in 8( ', but with alternating signs in A'( & at t=0.
(2') All prominent resonances' have their first zero
"simultaneously" in the narrow interval —0.6&t &—0.4

'3'( ) and 8( & in the notation of V. Singh, Phys. Rev. 129,
1889 (1963) and G. F. Chew, M. L. Goldberger, F. E. Low, and
Y. Nambu, ibid. 106, 1337 (1957). vL, is the laboratory energy of
the x.

5 Except the nucleon and the 1238, but they are strongly sup-
pressed in the higher sum rules.
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Bev' in 8& &; and (3') their first zero at —0.2 &t&—0.1
BeV' in A'& '. For negative t, we 6nd large cancellations
between the Born term and the lowest resonances in
A'& '. This can be useful for determining coupling con-
stants of these resonances, thus checking symmetry
predictions.

Section VI presents a criticism of the interference
model' based on FESR. We give theoretical reasons,
model examples, and experimental evidence for double
counting in the interference model, which represents the
amplitude at intermediate energies as a sum of Regge
poles plus direct-channel resonances.

Ke show that, to the same accuracy to which the Regge
expansion represents a function F(s,t) for v)E, the
following finite-energy sum rules should hold:

N

S„=——--
Qn+1

v" ImFdv=g (2)
(n+ n+ 1)I'. (++1)

The integration is de6ned over the right-hand cut in s
and includes the Born term even if it occurs at negative
v. We use the variable v rather than s because of the
usual symmetry properties in v= (s—u)/23II. It is
crucial to note that the relative importance of successive
terms in the FESR (for all moments) is the same as in
the usual Regge expansion, i.e., if a secondary pole or a
cut is unimportant in a high-energy fit above E, then
this singularity is unimportant to exactly the same ex-
tent in the FESR.'

There are several ways in which one can prove Eq.
(2), the simplest given by the use of the Khuri repre-
sentation. However, it is interesting to follow the origi-
nal derivation byconsidering superconvergence relations
and their evaluation. Let us consider an antisymmetric
amplitude that obeys the unsubtracted dispersion
relation

2v "ImF(v')
F(v) =— dv'.

X' p P —V

If its leading Regge term has e&—1, it will obey the
superconvergence relation

ImF (v) dv =0. (4)
0

V. Barger and D. Cline, Phys. Rev. Letters 16, 913 {1966);
V. Barger and M. Olsson, Phys. Rev. 151, 1123 {1966).

II. DERIVATION OF THE FINITE-ENERGY
SUM RULES

Finite-energy sum rules are consistency conditions
imposed by analyticity on functions that can be ex-
panded at high energies (v) E) as a sum of Regge poles.
The contribution of an individual Regge term can be
written as

~
—i~a(t)

z= p(&) va(t)

sin~n(/) I'(n+ 1)

However, if the leading Regge term (but not the next
one) is above —1, we can subtract it from F, and the
resulting amplitude will obey a superconvergence re-
lation. In order to simplify the calculations, we use in-
stead of the conventional Q i function of the Regge
pole the simple power v that has the right high-energy
behavior and obeys anunsubtracted dispersion relation:

P(1—~ ' ")
R(v) = — v,

sinai'(u+ 1)

2v " P v'~

R(v) =— -dv' (—1&n&1), (6)
I"(n+1) v"—v'

The amplitude Ii —R will satisfy the superconvergence
relation

Im(F —E)dv=0.

I et us now derive the finite-energy sum rules. Con-
sider a function I' antisymmetric in v for Qxed t that
can be represented by a series of Regge poles for ~&E.
(Our derivation goes through also for the background
integral in the j-plane; we leave it out for brevity of
notation. without the background integral all equa-
tions are asymptotic, X—+~, with the background
integral they are exact for all 1V.) We divide the poles
into three classes: o,; stands for all poles which are
above —1, 0,, for all poles below —1, and 0.I, for any
pole that happens to be at —1. These three classes
enter into the superconvergence rule in three very
different ways: The poles above —1 have to be sub-
tracted from the integrand, the poles below —1 do not
appear at all, and the residue of the pole at —1 appears
on the right-hand side.

ImF — Q v~' dv=Pg.
a,&-i I'(n;+ 1)

Each term on the left-hand side diverges if evaluated
separately. We intend to write the relation in a mani-
festly convergent form that will'also be suitable for
practical applications. Therefore, we cut off the inte-
gration at some v, =E and express the high-energy
behavior by Regge terms whose n is below —l:

ImF — Q v' dv
;&-i I'(n;+1)

+ Q v ~dv=Pp. (9)
a &—i I (Q&+ 1)

7 The Q I{~)form consists of a whole sequence of Khuri poles
v . If we take the expansion in terms of Q & seriously, then the
Mandelstam symmetry forces us to invoke additional Regge poles
at least at every point where a passes through a half integer be-
cause coefficients of the series of Q 1 become infinite. Therefore,
even theoretically it is more appropriate to consider a power
series rather than a Legendre series.



DOLE N, HORN, AND SCHM I D 166

The poles o,; below —1 have now entered the sum rule,
but in a quite different manner from the poles n, above
—1.Ke also notice thatall integrals are nowconvergent.

Performing the integration, we find the following finite-

energy sum rule:

P iV i.
5 (lV) =— ImFdv=

S p n;)—i I'(n, +2)

pcV ~ PiV~

+ Z +PV'= Z- (1o)
n '(—i I (ni+ 2) al I n F(n+ 2)

There are two very iniportant features of Eq. (10)
that must be stressed: (a) All Regge terms enter in the
final equation in the same form, regardless of whether
o. happens to be above, at, or below —1. This is a big
advantage of our method because it eliminates the
special role that the point —1 has in the usual treatment
of the superconvergence relation. This latter can, of
course, be rederived from (10) by letting JV —+ao, if all n

are below —1. (b) The relative importance of successive
terms in the finite-energy sum rule (10) is the same as in

the usual Regge expansion of the function F, i.e., if a
secondary pole or a cut is unimportant in a high-energy
fit above E, then this singularity is unimportant to
exactly the same extent in the low-energy sum rule.
Note that we have not used the Regge representation
for v below Ã.

The generalization from Eq. (10) to the sum rules for
arbitrary higher moments, Eq. (2), is straightforward.
The meaning of our sum rules (2) is further elucidated
if it is noted that they can also be derived in the follow-

ing manner: First use the forward dispersion relation
in order to compute the high-energy behavior of ReF.
As an input, use the experimental data below S and
the Regge fit to ImF above E. Afterwards, make a
Regge fit to ReF and check the consistency of the
two Regge fits. The consistency equations are identical
to our FESR, Eq. (2), for all even ts. The sum rules for
odd Imay be derived by considering the (unmeasurable)
J-parity amplitude. There has been some discussion
about whether fixed poles exist at the integer J values
of the wrong signature. These poles would simply ap-
pear on the right-hand side of Eq. (2). Schwarzs derived
superconvergence sum rules assuming that such fixed
poles are absent, while Mandelstam and Wang' as well

as Jones and Teplitz' recently showed that they might
exist.

The finite-energy sum rules, Eq. (2), can be similarly
derived for the symmetric functions, and we can write
similar sum rules for negative e. For the definite J-
parity amplitude f(v), which has only a, right-hand cut,

8 J. H. Schwarz, Princeton University Report (unpublished}.' S. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967};
C. E. Jones and V. L. Teplits, ibid 159, 1271 (1967). .

the formula analogous to Eq. (2) is

~ Jinf(v) P; E ' "
dv —P

' I'(n;+1) n;—ttsvms 1

f(mi(0)
m&0

m!

0,
(»)

m(0

's K. Igi, Phys. Rev. Letters 9, 76 (1962l.

where f&~~ is the ttsth derivative of f.
The special case of Eq. (11) with m= 0 is particularly

interesting. If the leading trajectory has n&0, then a
symmetric amplitude will have to have a subtraction
constant. This constant can be determined from Eq.
(11) by using the Regge parameters. Alternatively, if
this constant (e.g., the scattering length) is known, it
helps in determining the high-energy fit. Igi" used es-
sentially this argument in establishing the existence of
the I" trajectory.

It should be noticed that for the various sum rules
of arbitrary moments, it is an equally good approxi-
mation to keep only one, or several, Regge poles. For
each moment, the relative contribution of the successive
Regge terms is of the same order of magnitude. For il-

lustration, consider the sum rules Sp and S~ with the
following hypothetical choice of leading Regge poles-
one at o.=0.5 and the other at e= —1.5. If we subtract
the leading pole only, and if we use the formulation with
E—+00, then a superconvergence relation will hold for
Sp but not for S~. On the other hand, in our treatment
we see from Eq. (10) that the relative error committed

by neglecting the second Regge pole is almost the same
for both sum rules: The error committed in Si is 5/3
times the error in Sp, and in both cases it is of the order
g—2

Although higher-moment FESR are equally valid,
their usefulness diminishes the higher the moment gets
because the integrals are sensitive only to the behavior
of the function immediately below S. Similiarly, the
high-inverse-moment FESR lose their usefulness be-
cause they determine the mth derivative of the function
at threshold from the detailed behavior of the function
just above threshold.

Our finite-energy sum rule Sp sheds light on the be-
havior of the usual superconvergence relation as the
dominant Regge pole moves up through —1. Recall
that the usual relation gives zero if the dominant pole
is slightly below —1, a finite number (namely, the resi-

due) if the pole is exactly at —1, and infinity if the pole
is slightly above —1. Our finite relation for JP Imfdv
always gives a term of the form cS +' which is much
smaller than c (but not zero) for n below —1—(1niV) ',
about equal to c for n in the range —1+(1niV) ', and
much larger than c (but not infinite) for n above
—1+(in%) '. We see that the violent jumps from 0 to
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c to ~ have disappeared due to the 6nite integration,
and that the J-plane has become "coarse-grained" with
an uncertainty of DJ (lnN) '.

This discussion helps us to remove apparent problems
that were raised recently. Muzinich" and Phillips"
pointed out that the existence of a double p cut might
spoil the AI= 2 superconvergence relation of the 8 am-
plitude that had been checked by many authors. "Since
this cut will have n, (0)= 2rr, (0)—1, the exact value of
Qp seemed to be very crucial. We learn from the FESR
that for practical applications it is not crucial at all
whether n, (0) is slightly below or above zero. In any
case, the deviations of the sum rule from zero should
tell us the approximate strength of the cut or any other
singularity.

The trouble with this particular example (as with
many other ones) is that the only way to check the
sum rule is by summing over direct channel resonances.
The results have such big ambiguities that it is very
difficult to draw any convincing conclusion. However,
there existes at least one clean case where good experi-
mental data is available for the amplitude, namely the
m.S charge exchange in the forward directions. Several
authors' ' applied So to the A'& & amplitude at t=0
using the known total mX cross section. One 6nds that
So, as well as S~ and S2, are in agreement with the con-
ventional high-energy one p-pole analysis within the
experimental errors. ' In the present paper, we present
an analysis of both A'& & and 8& ' amplitudes as a
function of t and use the different FKSR to determine
their Regge parameters.

III. APPLICATION OF THE FINITE-ENERGY
SUM RULES: THE NEW BOOTSTRAP

There are several ways in which one can use the
FESR.The first one is in the spirit of the original super-
convergence paper of de Alfaro et a/. ,"namely, to use
as input the information about the Regge terms inferred
from high-energy data in order to determine parameters
of the s-channel resonances. " In applying FKSR to
superconvergent amplitudes, one might assume that the
right-hand side is negligible compared to the individual
contributions from the resonances to the left-hand side
of the equation. This assumption is implicitly made by
all authors who saturate superconvergence relations by
a 6niate number of resonances. This saturation amounts

"I.J. Muzinich, Phys. Rev. Letters 18, 381 (1967).
'~ R. J. N. Phillips, Phys. Letters 248, 342 (1967)."P. Babu, F. J. Gilman, and M. Suzuki, Phys. Letters 24B,

65 (1967); B. Sakita and K. C. Wali, Phys. Rev. Letters 1S, 31
(1967); G. Altarelli, F. Buccella, and R. Gatto, Phys. Letters 248,
57 (1967).

'4 The sum rule S& excludes the possibility of a strong axed pole
at j=—2 in A'& &.

"V. de Alfaro, S. Fubini, G. Furlan, and G. Rossetti, Phys.
Letters 21, 576 (1966).

'6 L. A. P. Balazs and J. M. Cornwall, Phys. Rev. 160, 1313
(1967). This use oi the FESR is closest in spirit to the original
superconvergence calculation of V. de Alfaro, S. Fubini, G. Furlan,
and G. Rossetti, Phys. Letters 21, 576 (1966).

to a choice of low E in the corresponding FESR. The
FKSR can, of course, be applied in the same spirit to
amplitudes that do not die very fast, provided their
high-energy behavior is known. In this case, the Regge
parameters enter in the right-hand side and, assuming
saturation by low resonances, one can determine their
coupling constants. This method applies" particularly
well to A'( & and 8(+) of xS scattering, since in these
amplitudes the contributions of the resonances to the
sum rules tend to cancel each other.

A second way' ' of using the FESR is as consistency
equations that are taken together with the high-energy
data for a better over-all determination of the Regge
parameters. In this way we can make use of the low-

energy data as well as the high-energy data in deter-
mining the asymptotic behavior. This link between the
two regions which is provided by the FESR stems, of
course, from the analyticity assumptions that were the
basis of the derivation.

A third kind of application, ' which might very well

be the most interesting one from the theoretical point
of view, is the use of the low-energy data alone as an
input to predict the exchanged Regge poles. This is a
new kind of bootstrap calculation. Thus, if one assumes
a one-pole fit, one can predict its trajectory rr(1) by
using the algebraic equation

S„:S„=(n+mi 1):(cr+n+ 1). (12)

The point at which n passes through a right-signature
integer corresponds to a pole in the scattering amplitude.

The crucual point which enables us to predict this
exchanged pole is the fact that ImF (i.e., the absorptive
part in the direct channel) stays regular at the position
of this pole, while ReF shows the singularity'

ImF v,
ReF v /(t —m'). (13)

Since ImF remains finite, there is no particular change
in Eq. (12) at this point and it is easily applicable.
Since we use the partial-wave series to construct ImF,
we assume that the exchanged pole is much larger than
the double-spectral function and neglect the latter so
that the series converges. Once rr(t) is determined, one
can use it in any of the FESR to determine P(t). It is
advisable to work separately with the odd and even
moment sum rules, since one of these families contains
the wrong-signature nonsense poles that do not affect
the observable amplitude.

This bootstrap method has several advantages over
the conventional N/D method: (1) Equation (12) is
an algebraic condition in o. and the physical pole is
reached when n passes through an integer. This is much
easier to use than the condition that the solution D of
the integral equation vanishes. (2) Approximations to
our method (like the resonance approximation) are

"In contrast, the absorptive part in the t channel is v'S(t —m').
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method depends on analyticity in two complex vari-
ables, s and t.

An ultimate perfect bootstrap based on the FESR
could be attempted in a, self-conjugate problem (like
mm scattering) in which the same particles that appear
on the trajectories in the t channel are used as resonances
building up the amplitudes in the low-energy s channel.
We do not attempt such a program here, but rather
restrict ourselves to a more practical one in which we
can use experimental data, the ~T problem. Our new
type of bootstrap works particularly well for ampli-
tudes like 8& & or A'+', where all prominent resonances
(A,X,E„) enter with the same sign and add up con-
structively in the FESR. On the other hand, the use of
the FESR in the reverse direction" (e.g., predicting the
relative strength of 1V and /*$238) is pal tlcularly suitable
for A'& ' and 8&+', where the resonances enter with
alternating signs and tend to cancel in the FESR.These
cancellations become particularly large for negative t

(see below).

IU. DETERMINATION OF y PARAMETERS
IN ~N CHARGE EXCHANGE:

USE OF A SINGLE FESR

A. Low-Energy Data
-20-.

ImvB' '
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70-

60-

50-

20-

10-

-10-

-20-.

BORN TERM CONTRIBUTION
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v
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"14.4+ .6
—27.6+ 1.4

In applying FESR off the forward direction, we can
either use phase shifts or assume saturation by the
established resonances. The latter method neglects a
nonresonating background; therefore we work with
phase shifts. They are known only at low energies and
only semiquantitatively; therefore, we expect to 6nd
only qualitative features. Ke have used the phase shifts
of Sareyre et al."to construct the imaginary parts of the
amplitudes plotted in Fig. 1.. The error bars indicate
the variation obtained using phase shifts of different
groups. "These errors turn out to be of the same order
of magnitude as the nonresonating background missing
in the resonance saturation model. A more quantitative
treatment will be possible as soon as phase shifts are
known more accurately and up to higher energies.
Figure 2 compares the result of Bareyre's phase shifts
with the resonance approximation for ImvB& & at t=0,
and one can see that both methods give about the same
result. Had we included error ba~s in this figure, both
curves would have become essentially equivalent. In
the following, we will rely principally on Bareyre's phase

FIG. 1. The imaginary parts of A'( & and vB( & as determined
from Bareyre's phase shifts. Error bars show the variation be-
tween diferent phase-shift groups.

easily tested while, e.g., the determinantal approxima-
tion to E/D is not. (3) Our method uses measurable
quantities, while X/D uses left-hand cuts, i.e., "forces."
(4) The FESR refer to one amplitude at a time, whereas
the X/D method often requires many-channel calcula-
tions. (5) X/D relies heavily on two-particle unitarity
which becomes useless at intermediate energies. Our

' P. Bareyre, C. Brickman, A. V. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965).

'9 B.H. Brandsen, P. J.O'Donnelly, and R. G. Moorhouse, Phys.
Letters 19, 420 (1965); A. Donnachie, R. G. Kirsopp, A. T. Lea,
and C. Lovelace, submitted to the 1966 Berkeley High-Energy
Physics Conference (unpublished); we used the solutions A, B,
IJ, I. The large error bars were usually caused by solution B.
The full error bar gives the difference between the highest and
lowest value so obtained. Ke have reason to believe that some of
Lovelace's solutions may be wrong because they show an ex-
tremely strong- peak in the full amplitude ImvB( & at 4=1.19
BeV/c, where no resonance seems to exist in any of the partial
waves. . It is therefore quite possible that the errog bars in I'ig 1
ar'e goo big.
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shifts with the upper limit of integration chosen at his
highest point, vt, =1.13 BeV. However, in order to reach
some additional conclusions that involve a higher cutoff,
we will also make use of the known parameters of the
higher resonances. Concerning the choice of E we note
that in the case t=0, where one uses the well-known
total cross sections, one should pick E at that energy,
where the wiggles. become smaller than the systematic
experimental error. This occurs around vt. =3.5 to 4.0
BeV. In contrast the resonance model requires a lower
Ã, because at high energies resonances alone do not
saturate the amplitude. We have to 6nd a compromise
between the requirement of high E on the right-hand
side of (2) and of low 1V on the left-hand side. We feel
that a good choice is vL, =1.5 BeV for 8& & and 2.5 BeV
for A'& &. In this paper we use phase shifts, and there-
fore we must take the cutoff at vL, =1.13 BeV.

The low cutoff is less serious for ImvB& & than for
ImA ( ), because all resonances add constructively in the
former, but they have alternating signs in the latter.
Furthermore, the low cutoff is a better approximation
for negative t than for t=0 or t=m, ', because for
t —0.4 higher resonances are suppressed, since they
have z, 0 and ~Pi~ &(ss.t sin8) '". The E and the
6(1238) blow up because their s, is ((—1, i.e., they are
outside the physical region.

FESR at (6xed) negative t involve integrations over
an unphysical region at low energies. Extrapolation
beyond s= —1 is done by using the partial-wave ex-
pansion. This expansion must diverge when we reach
the region of the double spectral function, but even in-
dependent of that the extrapolation differs greatly from
one phase-shift solution to another. (Phase-shift solu-
tions only involve a finite number of I's, therefore they
converge everywhere. ) Because of these extrapolation
difficulties at large momentum transfers and low energy,
one could use higher-moment sum rules which deem-
phasize the low-energy region.

Im s B& I

mb BeV

t=o OI PHASE SHIFTS (BAREYRE ET AL)

RESONANCES (ROSENFELD ET AL. 196?)

Fxo. 2. Comparison between the phase-shift results, the res-
onance model (see Ref. 35), and the Regge term for Img 8& i

at t=0.

B. Zexos of the Regge Amplitudes

In Fig. 1(b) we plot ImvB& ' for various values of t.
The nucleon Born term gets very large and negative

BeV~

FIG. 3. Plot of the left-hand sides of FESR: ES1(B&-&)
and 31''Sg(B& &).

for negative t, and the continuum also decreases rapidly;
therefore, when evaluating the integral of this function,
we find a zero between t= —0.4 and —0.5 BeV' (see
Fig. 3). From the dominance of the Born term and the
smallness of the continuum, we conclude that such a
zero has to occur also if the cutoff E is chosen around
3 or 5 BeV. Thus we predict from low-energy data that
the high-energy amplitude has a zero as expected from
the p Regge-pole interpretation

ImvB& ' ~ dv~=P&rv~/P(&r+1). (14)

In Fig. 1(a) we plot A'& ' at several t values. In the
integral So we find large cancellations, but the net result
(Fig. 6) is negative for t& —0.2. For t&0, there are
serious cutoff problems, but at k=0 we use (T~,& with a
high S and. establish that A'( ~ changes sign between
t=0 and t= —0.2. I et us discuss this problem a little
more in detail. The low cutoff is a serious problem for
ImA" ), if we want to predict the Regge residue. But
if we go to 3&—0.2,the cutoff error due to the wiggles
becomes Inuch less important, and it becomes compar-
able to or smaller than the Born term error and the
phase-shift error. For t= —0.2, —0.4, —0.6, the fit of
Arbab and Chiu is 2-,' to 4 times outside our error bars. '
But the possibility remains that a satellite pole accounts
for this difference. In order to make sure that we test
the p pole, we choose the cutoff at vt, =2.5 BeV, where

'0 F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966).
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arroll et a/. , Phys. Rev. Letters 16, 288 (1966),
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for our problem. The large values of s, enhance the
lowest terms via the Legendre polynomials. The moral
of this story is that if one wants to saturate analogous
sum rules by low resonances, then one has to choose ap-
propriate t values by taking into account the kinematics
of the problem. Note in particular that t=0 is not the
right choice here. This may be important for deriving
estimates of coupling constants and discussing the va-
lidity of higher symmetries. As we decrease t further,
other important resonances will eventually get out of
the physical region and play an important role in the
saturation of the sum rules.

C. Comparison with High-Energy Data

For a comparison (Fig. 6) of our predictions with
high-energy experiments, we assume a one-pole model
and take" n(t)=0.57+0.96t as an input from high-
energy experiments in order to predict the residue func-
tions c(t) and d(t) defined in Fig. 6. Note that the high-
energy differential cross sections measure only the sum
of the squares c'+d' of the residue functions. The
ambiguity in choosing c and d separately has been dis-

2' G. Hohler, J. Saacke, and G. Eisenbeiss, Phys. Letters 22,
203 (1966).
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cussed by Hohler et al."and is shown in Fig. 6 (see the
two different fits of curves 2 and 4). Experiment gives

upper bounds on c' and d', shown as curve 1.The FESR
allow us to resolve these ambiguities of high-energy fits:
Fig. 6 shows qualitatively that the choice of 2 of Ref. 22

is preferred over choice 4 of Ref. 20, i.e., c changes sign
near t= —O.i or —0.2 BeV'.

Quantitatively (see Ref. 23 for an explanation of the
errors), Fig. 6 shows that the one-pole approximation
using the conventional values of 0, is outside the
bound 1 established by high-energy experiments. This
discrepancy (by a factor of about 2) can be fitted
either by introducting a second p pole or by taking one
"effective p pole, " whose n, tt(t) has to be 0.3 lower in

order to give the coirect predictions at 10BeV. Choosing
E small enables us to see the effect of additional
singularities although it introduces big errors in the sum

rules. "The higher E gets, the better the one-pole fit will

be.

D. Intermediate ~N Resonances and the y Regge Term

While the lowest moment sum rules St(B& &) and
So(A't &) connect Regge parameters to the low-energy

behavior (1V,1V*isss), the next higher moments Ss(Bt &)

and Ss(A't ') establish a very interesting connection

between Regge parameters and the intermediate-energy

region. '4 The resonances in the intermediate energy

region have the very suggestive features (1'), (2'), and

(3 ) mentioned in the Introduction and shown in Fig. 5.
The first zeros in 8( ) of the prominent, intermediate-

energy resonances occur "simultaneously" in the narrow

interval —0.6&t& —0.4 BeV'."Hence, Ss(B& '), which

is dominated by the intermediate-energy region will pass
through zero at about the same place; see Fig. 3 and

Ref. 26. We see that the E* resonances occur with

just the right quantum numbers and at the right in-

tervals so as to vanish at the point where the Regge
pole passes through zero. Similarly, the first zeros of the
various resonances in the A'( & amplitude occur almost

simultaneously near t= —0.2 BeV'. Therefore, S2 of
A'(—

~ has a zero at about the same place. Note that 8
is mainly determined by Pt'(s), A' mainly by Pt(s); this

explains why the first zero of A' occurs at smaller mo-
mentum transfer than the first zero of 8.

Thus intermediate-energy data also establish both the
zero in Bt ' as expected from the high-energy fit (the
dip phenomenon) and the zero of A't & similar to that of
curve 2 in Fig. 6.

3S3—Sg

Sy—S3
(15)

3ES3 and ES~ are plotted in Fig. 3. We find

51p
0 BeV'—0.2 Bev'

Prediction of a
from Eq. (15)

1.0&0.3
0.4&0.2
0.3&0.3

Prediction of a
from high-energy

data (Refs. 20, 22, 27)

0.56—0.7
0.34-0.40

Equation (15) becomes unstable when n —+ 0 because
SI and S3 both become zero. In an "ideal" case where
there is nothing but one Regge pole, the two functions
would of course touch (but not cross) at the point et= 0.
It is therefore much more reliable to consider here the
zeros of S& and S3 directly. The zero of S& occurs at
t= —0.43&0.1 BeV', while that of S3 is at t= —0.52
+0.1 BeV' (see Fig. 3).

A simultaneous zero of S~ and S3 could also be caused
by d=0, o,/0. In that case the curves S& and $3 would
cross, but this obviously is not the case in Fig. 3. We
get a surprisingly good agreement, but we note that for
—0.6&t&0 the trajectory seems to be too low by 0.2.
This is a second, completely independent indication that
the effective n(t) of a one-pole fit at vr,

——1.13 BeV
should be lower than the n(t) measured around 10 BeV.

V. DETERMINATION OF y PARAMETERS:
COMBINED USE OF TWO FESR

A. One Effective y Pole

We now consider 8|' ) and use S~ and $3 together to
determine n, tt(t) in the bootstrap sense of Sec. III.
Equation (12) reads in this case, because B v~ ',

B. Determination of the Second y Pole

Let us now use S~ and S3 of B~ & together with the
high-energy fit of Arbab and Chiu (pt) to determine the
location of a possible second p trajectory (p&), which is
an explanation of the discrepancy found in Fig. 6. Using
the analog of Eq. (12),

Si dt1V ~&/(crt+1) us—+3
Ss di/V /(nt—+3) as+1

(16)

we (a) obtain an intercept rrs(0) =0.2&0.3; (b) compute
ns for —0.8& t&0 and fit it with a straight line cts(t) =
0.1+1.2t; and (c) find the zero of ns at t= —0.35&0.05

» K. J. Foley et al. , Phys. Rev. Letters 19, 330 (1967).

~' The error bars in Fig. 6 include the following: (a) the experi-
mental error in the low-energy integral (Born term, f'=0 Ogl.
&0.003, and phase shifts); and (b) an estimate of the background
integral in the j plane as derived from the size of the wiggles.
We estimated this error to be one-half of the area of the combined
1520-1688 peak above the smoothed-out amplitude. This error
from the wiggles would rapidly diminish with a higher limit of
integration N.

"The higher moments S~, etc., cease to be useful since the
integrals are dominated by the high-energy region (just below
the limit of integration N).

» If the direct-channel resonances lie on straight trajectories,
then their 6rst zeros do not stay at axed t; rather they approach
t=0 like 1/s, as can be seen from Pt(cosa) ~ Jo(t tt) for l ~ Do.

However, this is irrelevant in this connection, because at higher
energies these resonances are unimportant due to their small
elasticities.

"Taking n from high-energy Gts, we 6nd good agreement be-
tween (n+1)SI and (n+3)Sq, as would be expected from a one-

pole model.



from the vanishing of Si—diern&/(ni+1). Combining

(a), (b), and (c) we get a "best ht"

ng(t) =0.3+0.8t.

parameters of Arbab and Chiu'":

( N

Note the large error in (a) and the difference between

(b) and (c). One should be cautious and not take these
values too seriously because they were arrived at by
using Eq. (16).This equation is unreliable, because in it
we take differences twice, first between the sum rules
and the high-energy values, then between the different
moments.

This second p pole could be the phenomenological
representation of a cut; experimentally, one cannot dis-
tinguish between a cut and one or a few poles. The
description by cuts is phenomenologically advantageous
only when the discontinuity across the cut can be pre-
dicted from theory in terms of one or two free parame-
ters. In general, a cut is given by a continuum of param-
eters, while a pole is given by only two (position,
strength).

C. Polarization

Using n2(t) as given in Eq. (17), a slightly modified
Hohler-type" fit to the high-energy data (we moved the
zero of A't ~ from t= —0.2 to t= —0.1), and our in-

tegrals So(A'& ') and Si(B' &), we compute the residue
functions c2 and d~ of the second p pole. This allows us to
predict the polarization in xE CEX. Note that there
are no free parameters left. We predict the correct sign,
but the magnitude has large errors. We get P=+0.4
&0.3 for t = —0.2 and 0= 5.9 BeV/c. The corresponding
experimental value" is P=+0.1 &5.02.0

The sign of the polarization is determined by c&d&—

cid2 (where c and d refer to A'& & and 8& &). The sign

of this determinant can be read off from Fig. 6. Ke see

that both ratios c&'. c& and d;: d& are positive and. roughly
of magnitude 1. If these ratios were. exactly equal, we

could not get any polarization, even in the presence of
the second p pole. However, closer examination of Fig. 6
shows that ca/ci) d2/di' , therefore, we predict a positive
polarization.

D. Fixed Pole in B~

An amazing result comes from evaluating So for 8' &.

The ratios between the left-hand side of the FKSR and

the right-hand side in the one-pole approximation (using
the high-energy parameters of Ref. 20) are 4.5, 5.1, 6.1,
7.3, 8.9 for 3=0, —0.2, —0.4, —0.6, —0.8, respectively.
The So sum rule is therefore drastically violated in the
one-pole approximation, i.e., there must be a strong
second. pole. Ke determine its position by considering
both sum rules So and S~ together with the p pole

(1 N

dvIrnv8( &-
Ex

di ) &2+1
1V i i=-

&i+ 1
(18)

We get for the position of the second pole o.2= 0.12, 0.04,—0.03, —0.09, —0.15, for t=0, —0.2, —0.4, —0.6,—0.8, respectively. In other words, it is very near m=0
and has an unusually Rat slope. The effect is consistent
with the existence of a fixed pole at o.=0 that cannot
affect the physical amplitude because it is at a wrong-
signature nonsense point. The absence of such poles
would lead to a Schwarz-type sum rule. ' Mandelstam
and Wang' have recently shown that fixed poles arise
due to sects of the third double spectral function. Note
that the pole found in our treatment is an additive one
and will not change the conclusion about the dip of the
B~ ' amplitude.

It is interesting to note the special role that the
nucleon Horn term plays in this sum rule. The Born
term has vl. ———0.01 BeV'. Because of the smallness of
v=vl+t/4M, it is overpowering in 8& &, moderately
important in A'& ) and PB( ), and negligible in higher
sum rules. Overpowering nucleon dominance in 8& '

means that the high-energy ta, il 1/v of the Born term
cannot combine with the continuum to give s ' with
n/0, therefore it gives a fixed Regge pole at o.=0 which
is an unphysical point for 8& ). Furthermore, the Born
term and the 1238 enter with the same sign in 8& ',
but with the opposite sign in 8'+).

VI. RESONANCES, REGGE TERMS) AND
DOUBLE COUNTING

A. Interference Model and Double Counting

There are two complete representations of any scat-
tering amplitude: One is the partial-wave series which
can be dominated by direct-channel resonances or might
have a large nonresonating background, and the other
is the Regge asymptotic series consisting of pole (and
cut) terms s plus a background integral in the j plane.
The combined FESR tells us that the sum of Regge terms
s gives a fit to the smoothed-out experimental curve,
and only the remaining wiggles are contributed by the
background integral in the j plane, i.e., the smoothed-
out resonance contribution is already included by the
Regge-pole terms. The size of these wiggles forms the
limit of the accuracy to which we can determine the
Regge parameters from the FESR. As such, they were
included in the error attached to the calculation of the
FKSR.

An interference model' has been proposed which
represents the amplitude as

P. Bonamy et pl. , Phys. Letters 23, 501 (1966). ~=Pnegge+PRes (19)
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in the intermediate-energy region. In contrast, we shall
show that the correct prescription should be

F=FResge+FRes (f Res)q (20)

where (FR,.) denotes the loca, lly averaged resonance
amplitude. The term (FR„) is not included in the inter-
ference model. If all resonances enter with the same

sign, then (FR,.)&0 and the interference model in-

volves double counting. If the resonances enter with al-

ternating sign and comparable strength, then (Fit„) ~0

and the interference model agrees with our prescription.
If the resonances overlap to a considerable extent,

F a„be comes very smooth, FR»—(Fa,,), and we have

~—~Begged

even though FR„might be large (compare s'+p at 180,
Sec. VID).

B. FESR Versus Interference Model

In the interfernece model it is usually assumed that
one Regge pole is sufficient for the high-energy region,
and the resonances have to be superimposed on it in

the intermediate-energy region. I et us see now how the
FESR contradicts this assumption. Choose a non-Rip

elastic amplitude at t= 0 whose imaginary part is posi-
tive definite. Then left us choose N in the asymptotic
region where the amplitude is given to a high accuracy
as v . The FESR state that below N the imaginary part
has to average out" around the curve v, whereas the
interference model would suggest that the resonances
(which necessarily are all positive) should be added to
~" and therefore yield a curve which is everywhere
above v . This latter suggestion is in clear contradiction
with the FESR and, therefore, with analyticity. "

Analyticity by itself does not contradict a model in

which v fits only a background amplitude on which one
superimposes some Breit-signer terms, since every term
satisfies the analyticity conditions separately. How-

ever, in that case the resonance terms contribute a real
amplitude that goes like v ' (the sum of their tails),
which is nothing but an additional fixed Regge pole at
o,=i. If we frere to include also the latter in Iia,«„
we would introduce double counting. In other models

which suppress the high-energy tails of resonances, the
first-mentioned contradiction with analyticity directly
follows.

This discussion has some implications regarding re-

cently suggested explanations of the polarization in &N

'9 Because of the di6erent weights in the diAerent sum rules,
the averaging out must occur locally and not only in the entire
interval from threshold to E.

'0 The interference model has led R. Gatto PPh~s. Rev. Letters
18, 803 (1967)g and G. V. Dass and C. Michael LPhys. Rev. 162,
1403 (1967lg to sum rules which, if applied to 8& &, produce a
violent contradiction by equating a sum of positive resonance
residues to zero. While these authors use the interference model
down to threshold, it must be emphasized that Barger and Cline
proposed the model for intermediate energies and not for low
energies.

CEX by interference of either the tails of low-energy
resonances" or high-energy resonances" with the p
Regge amplitude. The tails of the low-energy resonances
go like v ', and if they could be isolated from the rest,
they would produce a fixed Regge pole at n= —1. But
in fact these tails cannot be isolated, and they combine
with other contributions to make up the real part of the
usual p-Regge term (and perhaps of additional p'-Regge
terms). Similarly, the high-energy resonances contrib-
ute their share to the sum of Regge terms.

C. Resonance Poles and the Asymptotic
Regge Expansion

A series of Regge-pole terms cannot converge for real
energies below any resonance. This is due to the fact
that each term s is regular at the position of the reso-
nance pole sg =m g' —imgI'g. If the sum of the s terms
would converge for real s,&mg-', then it would also
converge everywhere outside the circle

~
s

~
)s, and be

finite at s= s~, i.e., the amplitude would not have a pole
at s=sg. Therefore a Regge expansion is an asymptotic
expansion.

A finite sum of Regge terms treats the region above
the real s axis (the first sheet) and the region below it
(the second sheet) alike, while we know from general
principles that the scattering amplitude is regular on the
first sheet, but contains all kinds of singularities on the
second sheet. The situation in the background integral
(for a fixed path in the / plane) is different: Again each
term s' is regular at s=sg, but the domain of conver-
gence is changed. The background integral converges
for Ims) 0 and diverges for Ims(0 (i.e., on the second
sheet just below the physical region), where the reso-
nance poles are.

It has been argued that the inclusion of more and
more Regge terms could produce wiggles in analogy to
the convergent expansion of sin(1js) in powers of 1/s.
This is impossible because in any asymptotic expansion
we must keep fewer and fewer (Regge) terms as we go
to lower energies. Wiggles could only be produced where
successive terms in the asymptotic expansion are of
comparable magnitude. In that case, however, the
asymptotic series, by its very definition, has to be
truncated before these terms are reached.

Ke shall now give an example which illustrates double
counting, and which shows how resonance wiggles come
from the background integral and not from successive
Regge terms. Our model consists of the function F(v) =
p(v) —

lf (1—v), where p(v) is the logarithmic derivative
of I'(v). The spectral function consists only of resonance
poles (we do not introduce a Regge pole), and these
resonances generate the full amplitude. F(v) has an

"R. J. X. Phillips, Nuovo Cimento 45, 245 (1966);R. K. Logan
and L. Sertorio, Phys. Rev. Letters 17, 834 (1966).

~2 B. R. Desai, D. T. Gregorich, and R. Ramachandran, Phys.
Rev. Letters 18, 565 (1967); G. Altarelli, A. Borgese, F. Buccella,
and M. Colocci, Nuovo Cimento 48A, 245 (1967).
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essential singularity at infinity (an accumulation point
of resonance poles); however, a dispersion relation is
still valid. In fact, along any ray «&argv&zr —e, F(v)
allows an asymptotic expansion (Stirling's expansion)
which consists of one term only: ivy'. Two things are
remarkable: (1) Although we started with resonances
only, we end up with a Regge pole at zr =0. (2) There is
only one term in the asymptotic expansion, all other
terms in the Stirling expansion (an infinite number of
terms) cancelled when we took the odd part of f(v).
The complex / plane contains only one Regge pole. In
addition, it has an essential singularity at l= .

The asymptotic formula is valid for
t
v

~

~eo, e& argv
&zr—e. If we take v=

~
v~e", then the "width" of the

"resonance" poles will increase linearly, and F(v) will
look very similar to vB&—' in m.T CEX at t=0, i.e., the
resonances overlap more and more and form a smooth
function at high energy, namely the Regge asymptotic
form.

The fact that we have one Regge pole only implies
that an infinite number of superconvergence relations
are valid after the subtraction of this one Regge
pole.

Next we treat a similar model for 3/0. We assign
successive even angular momenta to the resonances. If
we want to ensure that the first zero" of all Ft(s) occurs
at the same fixed t, we must assume a tower of direct
channel resonances with l; —zztQs; (or nztz ltz). The
coupling constants are taken to have a power behavior

g ~ s,'. The asymptotic behavior of the resulting func-
tion is ImF(s, /) -+ P(/)sa"' with n(t) = const=c —st and
P(/) = constJs(2ag —t).

In this simple model the t-channel Regge pole has a
horizontal trajectory irrespective of the choice of the
coupling constats g;. This is no accident: One tower of
direct-channel resonances is never sufIicient at high
energies, if we want to build up a Regge trajectory in the
t channel with nonzero slope. The reason is that asymp-
totically for large l the Legendre polynomials have a
constant ratio between the primary peak at s=+1 and
the secondary peak. Regge behavior demands that this
ratio decreases like s ('» ('), where tj is the position
of the secondary peak. A large number of partial waves
(which may be represented by resonances) is required
at every energy in order to suppress the secondary peaks
of the various E~. In other words, there must be a strong
correlation between the partial waves, and the partial-
wave description as well as the resonance saturation
model becomes very uneconomical at high energies.

There is complete symmetry with respect to an inter-
change of t and u in our example. The s-channel reso-
nances alone build up both a t- and a u-Regge pole. One
is likely to do triple counting if one includes all three
types of amplitudes (say for a fit of the valley between
the forward and backward directions).

zz Et(coss) ~ Jo(/O) for / ~~; see Hateman Manuscript Project,
Higher Trazzscezv/enta/ Fzzzzctions, edited by A. Erdelyi (McGraw-
Hill Book Co., Inc., New York, 1953), Vol. II, Sec. 7.8.

D. Interference Model at 0' and 180', Crucial Tests

Crucial tests are provided by the amplitudes where
all prominent resonances enter with the same sign. On
the other hand, for the amplitudes where they enter with
cancelling contributions, the interference model does not
di6er much from the correct treatment, because the
double counting involves the averaged resonance
contribution.

1. Imk '2'&+)a& t=o

This is the average of the zr+p total cross sections.
Extrapolating the various high-energy Regge fits down
to k=1.0 BeV, one gets 40&4 mb from Foley et, al."
and 35~1 mb from Rarita et al. '4 On the other hand,
the locally averaged 0 ~+' at 1 BeV is 37&7 mb, where
the error bars give the size of the resonance wiggles.
We see that the extrapolated F+F' Regge contribution
already gives the locally averaged low-energy amplitude.
There is no place left for adding in the full resonance
contributions of the four resonances around the 1688
(Fis,Dis,Ssi Sii), which amount to 26 mb.

Z. ImvB(—) at I,=o
In Fig. 2 we plot this amplitude both as derived from

phase shifts and from the resonance model. "The region
above v=0.6 BeV has the qualitative features of the
intermediate-energy region, i.e., the wiggles are smaller
than the average amplitude. It is comparable to the
region 2(v(3 BeV in ImA't 1 (see Fig. 7), where
Barger and Olsson applied their model. Figure 2 shows
that in the case of ImvB( & the nonresonating back-
ground amplitude is small and of the opposite sign
from the extrapolated Regge amplitude. This is in con-
tradiction to the interference model, which assumes
that the nonresonating background can be approxi-
mated by the Regge amplitude.

3. zr+p Differential Cross Sectiort a/ 180'

There is only one prominent trajectory here, the 6&
(1238, 1920, etc.).Therefore, all resonances add at 180 .
Barger and Cline36 state that a "large direct-channel
contribution saturates the backward zr+p elastic scat-
tering differential cross section below 4 BeV/c. Signifi-

"W. Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1615 (1968).

"A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967). When
we say resonance model, we take the narrow-resonance approxi-
mation, i.e., a 8 function in ImF, and merely for graphical pur-
poses we spread the 8 function out to a symmetric Breit-Wigner
shape in the amplitude under consideration. According to this
definition, we have (vt) a„/v(PR. ..r), but it has the advantage that
the integral over the resoaance is the same as in the narrow-
resonance approximation, and therefore unique. This treatment
is obviously bad for the 1238 because it is so close to threshold.

By the way, it is interesting to see in Fig. 2 that the (1670, 1670,
1688, 1700) peak has a diferent position in curves 1 and 2. The
difference is supposed to be free of poles and therefore a function
without wiggles.

'6 V. Barger and D. Cline, Phys. Letters 22, 666 (1966).
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cant contributions from fermion Regge exchange do not
seem to be required to explain the gross features of the
s.+p backward scattering data below 4 BeV/c. "

On the other hand, using the high-energy Regge fit"
down to pr, ——3.5 BeV (where the data and the 6t of
Barger and Cline are quite smooth), one also gets a good
fit to the locally averaged data with Regge alone. There-
fore, Regge alone and resonances alone explain the data
around 4 BeV equally well. The interference model
(Fa„+Frt, «,) would involve very serious double count-
ing. This example is particularly nice, because we have
not only F~Fz,«„ as is expected in general, but also
F~FR„, i.e., we have resonance saturation in the region
up to 4 BeV.

E. Interference Model at 0' and 180', Ambiguous Tests

1. s- p Digerental Cross Section at 180'

This cross section was fitted in the interference model

by Barger and Cline, "apparently giving evidence for
the model. However, because the resonances tend to
cancel, a slight change in their parameters (elasticities)
gives very different 6ts. In particular, Dikmen". has
shown that an equally good fit can be achieved by the
resonances alone if one varies the (poorly known) elastic-
ities by a very small amount. The difference between
Dikmen's and Barger's elasticities as "determined" at
180e is (in ss of the cases) smaller than the difference
between the elasticities that Barger used in his fits at
0' and 180', respectively. On the other hand, using
the high-energy Regge fit" down to pr, ——3.5 (where the

'7 A. Ashmore et al. , Phys. Rev. Letters 19, 460 (1967).
"V.Barger and D. Ciine, Phys. Rev. Letters 16, 913 (1966)."F.N. Diknmn, Phys. Rev. Letters 18, 798 (1967).

data are quite smooth), one also gets a good fit with
Regge alone.

It is not surprising that three different models can
fit the data. The two important points are as follows:
(a) The resonances enter with alternating signs and the
full amplitude is very small. (b) Above 3.5 BeV we have
considerable overlap between resonances and therefore
Fn„~(FR„). In Barger and Cline" the resonances
cancel almost completely above 3.5 BeV, FR„~O, and
therefore they get essentially F~FR,«,. In Dikmen"
the resonances do not cancel completely, FR„/0, and
because the full amplitude is small, he is able to produce
F~FR„. In both cases the correct prescription gives
F~FR,«, because of the considerable overlap of the
resonances.

Z. ImA'& & cf t=o

This is the difference of the z.+p total cross sections,
—,'k(o —o~). This example was considered to give the
second successful test of the interference model; see
Barger and Olsson. ' It was also the first application of
FESR' which state that the full amplitude on the aver-
age equals the Regge amplitude. Figure 7 shows that
this is indeed the case (with the use of only one Regge
pole). Figure 7 also tells us that we have (Fa„)~0
because of the alternating resonance signs. Therefore,
the interference model agrees with the correct prescrip-
tion in this case, and it cannot be tested.

We have given conclusive experimental evidence at
0' and 180' against the interference model in all cases
where the resonances enter with the same sign, and we
have explained that the interference model cannot be
reliably tested, if the resonances enter with alternating
signs.
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4'K. I i and
(unpublished). In our Phys. Rev. L tt R

4~ . g . Matsuda, Universit o-.h. .d .R.f. 42yb.
~ . ~ "( .. )

ip an S. Matsuda, Phys. Rev. 163, 1622 (1967)."G HoG P. Hoff, Phys. Rev. Letters 18, 816 (1967).
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